Efficient Higher Order Derivatives of Objective Functions Composed of Matrix Operations
نویسنده
چکیده
This paper is concerned with the efficient evaluation of higher-order derivatives of functions $f$ that are composed of matrix operations. I.e., we want to compute the $D$-th derivative tensor $\nabla^D f(X) \in \mathbb R^{N^D}$, where $f:\mathbb R^{N} \to \mathbb R$ is given as an algorithm that consists of many matrix operations. We propose a method that is a combination of two well-known techniques from Algorithmic Differentiation (AD): univariate Taylor propagation on scalars (UTPS) and first-order forward and reverse on matrices. The combination leads to a technique that we would like to call univariate Taylor propagation on matrices (UTPM). The method inherits many desirable properties: It is easy to implement, it is very efficient and it returns not only $\nabla^D f$ but yields in the process also the derivatives $\nabla^d f$ for $d \leq D$. As performance test we compute the gradient $\nabla f(X)$ % and the Hessian $\nabla_A^2 f(A)$ by a combination of forward and reverse mode of $f(X) = \trace (X^{-1})$ in the reverse mode of AD for $X \in \mathbb R^{n \times n}$. We observe a speedup of about 100 compared to UTPS. Due to the nature of the method, the memory footprint is also small and therefore can be used to differentiate functions that are not accessible by standard methods due to limited physical memory.
منابع مشابه
An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...
متن کاملStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0911.4940 شماره
صفحات -
تاریخ انتشار 2009